Navigation

Replication

A replica set in MongoDB is a group of mongod processes that maintain the same data set. Replica sets provide redundancy and high availability, and are the basis for all production deployments. This section introduces replication in MongoDB as well as the components and architecture of replica sets. The section also provides tutorials for common tasks related to replica sets.

Redundancy and Data Availability

Replication provides redundancy and increases data availability. With multiple copies of data on different database servers, replication provides a level of fault tolerance against the loss of a single database server.

In some cases, replication can provide increased read capacity as clients can send read operations to different servers. Maintaining copies of data in different data centers can increase data locality and availability for distributed applications. You can also maintain additional copies for dedicated purposes, such as disaster recovery, reporting, or backup.

Replication in MongoDB

A replica set is a group of mongod instances that maintain the same data set. A replica set contains several data bearing nodes and optionally one arbiter node. Of the data bearing nodes, one and only one member is deemed the primary node, while the other nodes are deemed secondary nodes.

The primary node receives all write operations. A replica set can have only one primary capable of confirming writes with { w: "majority" } write concern; although in some circumstances, another mongod instance may transiently believe itself to also be primary. [1] The primary records all changes to its data sets in its operation log, i.e. oplog. For more information on primary node operation, see Replica Set Primary.

Diagram of default routing of reads and writes to the primary.

The secondaries replicate the primary’s oplog and apply the operations to their data sets such that the secondaries’ data sets reflect the primary’s data set. If the primary is unavailable, an eligible secondary will hold an election to elect itself the new primary. For more information on secondary members, see Replica Set Secondary Members.

Diagram of a 3 member replica set that consists of a primary and two secondaries.

In some circumstances (such as you have a primary and a secondary but cost constraints prohibit adding another secondary), you may choose to add a mongod instance to a replica set as an arbiter. An arbiter participates in elections but does not hold data (i.e. does not provide data redundancy). For more information on arbiters, see Replica Set Arbiter.

Diagram of a replica set that consists of a primary, a secondary, and an arbiter.

An arbiter will always be an arbiter whereas a primary may step down and become a secondary and a secondary may become the primary during an election.

Asynchronous Replication

Secondaries replicate the primary’s oplog and apply the operations to their data sets asynchronously. By having the secondaries’ data sets reflect the primary’s data set, the replica set can continue to function despite the failure of one or more members.

For more information on replication mechanics, see Replica Set Oplog and Replica Set Data Synchronization.

Slow Operations

Starting in version 4.2 (also available starting in 4.0.6), secondary members of a replica set now log oplog entries that take longer than the slow operation threshold to apply. These slow oplog messages are logged for the secondaries in the diagnostic log under the REPL component with the text applied op: <oplog entry> took <num>ms. These slow oplog entries depend only on the slow operation threshold. They do not depend on the log levels (either at the system or component level), or the profiling level, or the slow operation sample rate. The profiler does not capture slow oplog entries.

Replication Lag and Flow Control

Replication lag refers to the amount of time that it takes to copy (i.e. replicate) a write operation on the primary to a secondary. Some small delay period may be acceptable, but significant problems emerge as replication lag grows, including building cache pressure on the primary.

Starting in MongoDB 4.2, administrators can limit the rate at which the primary applies its writes with the goal of keeping the majority committed lag under a configurable maximum value flowControlTargetLagSeconds.

By default, flow control is enabled.

Note

For flow control to engage, the replica set/sharded cluster must have: featureCompatibilityVersion (FCV) of 4.2 and read concern majority enabled. That is, enabled flow control has no effect if FCV is not 4.2 or if read concern majority is disabled.

With flow control enabled, as the lag grows close to the flowControlTargetLagSeconds, writes on the primary must obtain tickets before taking locks to apply writes. By limiting the number of tickets issued per second, the flow control mechanism attempts to keep the the lag under the target.

For more information, see Check the Replication Lag and Flow Control.

Automatic Failover

When a primary does not communicate with the other members of the set for more than the configured electionTimeoutMillis period (10 seconds by default), an eligible secondary calls for an election to nominate itself as the new primary. The cluster attempts to complete the election of a new primary and resume normal operations.

Diagram of an election of a new primary. In a three member replica set with two secondaries, the primary becomes unreachable. The loss of a primary triggers an election where one of the secondaries becomes the new primary

The replica set cannot process write operations until the election completes successfully. The replica set can continue to serve read queries if such queries are configured to run on secondaries while the primary is offline.

The median time before a cluster elects a new primary should not typically exceed 12 seconds, assuming default replica configuration settings. This includes time required to mark the primary as unavailable and call and complete an election. You can tune this time period by modifying the settings.electionTimeoutMillis replication configuration option. Factors such as network latency may extend the time required for replica set elections to complete, which in turn affects the amount of time your cluster may operate without a primary. These factors are dependent on your particular cluster architecture.

Lowering the electionTimeoutMillis replication configuration option from the default 10000 (10 seconds) can result in faster detection of primary failure. However, the cluster may call elections more frequently due to factors such as temporary network latency even if the primary is otherwise healthy. This can result in increased rollbacks for w : 1 write operations.

Your application connection logic should include tolerance for automatic failovers and the subsequent elections. Starting in MongoDB 3.6, MongoDB drivers can detect the loss of the primary and automatically retry certain write operations a single time, providing additional built-in handling of automatic failovers and elections:

  • MongoDB 4.2-compatible drivers enable retryable writes by default
  • MongoDB 4.0 and 3.6-compatible drivers must explicitly enable retryable writes by including retryWrites=true in the connection string.

Starting in version 4.4, MongoDB provides mirrored reads to pre-warm electable secondary members’ cache with the most recently accessed data. Pre-warming the cache of a secondary can help restore performance more quickly after an election.

To learn more about MongoDB’s failover process, see:

Read Operations

Read Preference

By default, clients read from the primary [1]; however, clients can specify a read preference to send read operations to secondaries.

Diagram of an application that uses read preference secondary.

Asynchronous replication to secondaries means that reads from secondaries may return data that does not reflect the state of the data on the primary.

Multi-document transactions that contain read operations must use read preference primary. All operations in a given transaction must route to the same member.

For information on reading from replica sets, see Read Preference.

Data Visibility

Depending on the read concern, clients can see the results of writes before the writes are durable:

  • Regardless of a write’s write concern, other clients using "local" or "available" read concern can see the result of a write operation before the write operation is acknowledged to the issuing client.
  • Clients using "local" or "available" read concern can read data which may be subsequently rolled back during replica set failovers.

For operations in a multi-document transaction, when a transaction commits, all data changes made in the transaction are saved and visible outside the transaction. That is, a transaction will not commit some of its changes while rolling back others.

Until a transaction commits, the data changes made in the transaction are not visible outside the transaction.

However, when a transaction writes to multiple shards, not all outside read operations need to wait for the result of the committed transaction to be visible across the shards. For example, if a transaction is committed and write 1 is visible on shard A but write 2 is not yet visible on shard B, an outside read at read concern "local" can read the results of write 1 without seeing write 2.

For more information on read isolations, consistency and recency for MongoDB, see Read Isolation, Consistency, and Recency.

Mirrored Reads

Starting in version 4.4, MongoDB provides mirrored reads to pre-warm the cache of electable secondary members (i.e. members with priority greater than 0). With mirrored reads (which is enabled by default), the primary can mirror a subset of operations that it receives and send them to a subset of electable secondaries. The size of the subset is configurable.

Note

The primary’s response to the client is not affected by the mirror reads. The mirrored reads are “fire-and-forget” operations by the primary; i.e., the primary does not await the response for the mirrored reads.

Supported Operations

Mirrored reads are supported for the following operations:

Enable/Disable Support for Mirrored Reads

With MongoDB 4.4, mirrored reads are enabled by default and use a default sampling rate of 0.01. That is, the primary mirrors reads to each electable (i.e. priority greater than 0) secondary at the sampling rate of 1 percent.

For example, given a replica set with a primary and two electable secondaries and a sampling rate of 0.01, if the primary receives 100 operations that can be mirrored, the sampling may result in 1 reads being mirrored to one secondary and 0 reads to the other or 0 to each, etc.

To modify the sampling rate, use the mirrorReads parameter:

  • A sampling rate value of 0.0 disables mirrored reads.
  • A sampling rate greater than 0.0 enables mirrored reads.
  • A sampling rate cannot be greater than 1.0.

For details, see mirrorReads.

Mirrored Reads Metrics

Starting in MongoDB 4.4, the command serverStatus and its corresponding mongo shell method db.serverStatus() return mirroredReads if you specify the field’s inclusion in the operation. For example,

db.serverStatus( { mirroredReads: 1 } )

Transactions

Starting in MongoDB 4.0, multi-document transactions are available for replica sets.

Multi-document transactions that contain read operations must use read preference primary. All operations in a given transaction must route to the same member.

Until a transaction commits, the data changes made in the transaction are not visible outside the transaction.

However, when a transaction writes to multiple shards, not all outside read operations need to wait for the result of the committed transaction to be visible across the shards. For example, if a transaction is committed and write 1 is visible on shard A but write 2 is not yet visible on shard B, an outside read at read concern "local" can read the results of write 1 without seeing write 2.

Change Streams

Starting in MongoDB 3.6, change streams are available for replica sets and sharded clusters. Change streams allow applications to access real-time data changes without the complexity and risk of tailing the oplog. Applications can use change streams to subscribe to all data changes on a collection or collections.

Additional Features

Replica sets provide a number of options to support application needs. For example, you may deploy a replica set with members in multiple data centers, or control the outcome of elections by adjusting the members[n].priority of some members. Replica sets also support dedicated members for reporting, disaster recovery, or backup functions.

See Priority 0 Replica Set Members, Hidden Replica Set Members and Delayed Replica Set Members for more information.

[1](1, 2) In some circumstances, two nodes in a replica set may transiently believe that they are the primary, but at most, one of them will be able to complete writes with { w: "majority" } write concern. The node that can complete { w: "majority" } writes is the current primary, and the other node is a former primary that has not yet recognized its demotion, typically due to a network partition. When this occurs, clients that connect to the former primary may observe stale data despite having requested read preference primary, and new writes to the former primary will eventually roll back.